Лабораторная работа 5 обработка заготовок на сверлильных станках (стр. 1 )


Сверлильные и расточные станки как близкие по назначению объединены в одну (2-ю) группу.

Сверление – метод получения сквозных или несквозных отверстий в сплошном материале. Обработку предварительно полученных отверстий в литых или штампованных заготовках (а также предварительно просверленные отверстия) для придания им правильной геометрической формы, повышения точности и снижения шероховатости рациональнее вести многолезвийным режущим инструментом-зенкером на сверлильных станках. Расточные станки применяют в основном для обработки отверстий с точно координированными осями в крупно- и среднегабаритных заготовках корпусных деталей.

Обработку при этих методах, осуществляют при сочетании вращательного движения инструмента (сверла, резца и другого режущего инструмента при растачивании) являющегося главным движением и движения подачи (рисунок 4.5). Так, сверло, при обработке на сверлильном станке, получает поступательное движение подачи вдоль его оси.

При растачивании, движение подачи может быть продольным, радиальным и вертикальным, в зависимости от характера обрабатываемой поверхности, сообщается инструменту или заготовке.

На расточных станках выполняют также сверление, зенкерование, развертывание и растачивание отверстий, обтачивание наружных цилиндрических поверхностей резцом, подрезание торцов, нарезание резьбы и фрезерование плоскостей.

Сверление

За скорость резания (м/мин) принимают окружную скорость точки. Окружная скорость режущей кромки наиболее удаленной от оси сверла:

м/мин.

Откуда

, мин–1 – частота вращения сверла.

Для обработки конструкционных углеродистых сталей:

, м/мин.

Скорость резания при сверлении изменяется от максимального значения вдоль режущей кромки на периферии сверла до нулевого значения У центра. Вызывает сложное деформирование Ме элемента срезаемого слоя.

Подача Sв (мм/об) равна осевому перемещению за один оборот. Глубина резания при сверлении в сплошном материале:

t=D/2

При рассверлении:

t=(D-d)/2, мм.

При выборе V особо учитывать стойкость сверла.

Способы обработки на сверлильных станках

Сверлильные станки предназначены для сверления глухих и сквозных отверстий, рассверливания, зенкерования, развёртывания, растачивания и нарезания резьбы (рисунок 3).

Сверление – основной технологический способ образования отверстий в сплошном материале обрабатываемой заготовки. Сверлением могут быть получены как сквозные, так и глухие отверстия. При сверлении используют стандартные свёрла. Отверстия диаметром больше 30 мм в сплошном материале обычно сверлят двумя свёрлами (первое – диаметром 12…15 мм, второе – в размер отверстия). Точность отверстий, полученных сверлением, находится в пределах 12…14 квалитетов.

Рассверливание выполняют для увеличения диаметра отверстия, полученного литьем, ковкой, штамповкой или сверлением.

Зенкерование – технологический способ обработки предварительно просверленных отверстий или отверстий, изготовленных литьём или штамповкой. Зенкерование осуществляется инструментом зенкером. В отличие от рассверливания зенкерование обеспечивает большую производительность и точность обработки (10…11 квалитет).

Зенкерование может быть и окончательной операцией при обработке просверленных отверстий по 11…13 квалитетам или для получистовой обработки перед развертыванием.

Зенкер отличается от сверла более жесткой рабочей частью, отсутствием поперечной режущей кромки и увеличенным числом зубьев.

Развёртывание – технологический способ окончательной обработки предварительно обработанных отверстий в целях получения точных по форме и диаметру цилиндрических и конических отверстий (6…9 квалитет точности) с малой шероховатостью (Ra = 0,32…1,25 мкм). В качестве инструмента используют развёртки, имеющие чётное число режущих кромок. Развертки являются многолезвийным инструментом, срезающим очень тонкие слои с обрабатываемой поверхности.

Отверстия диаметром до 10 мм развёртывают после сверления, а свыше 10 мм – после сверления и зенкерования.

а
– зацентровка;
б
– сверление отверстия в сплошном материале;
в
– рассверливание;
г
– зенкерование;
д
– зенкование уступа;
е
– зенкование фаски;
ж
– зенкование бобышек;
з
– развертывание цилиндрического отверстия;
и
– развертывание конического отверстия Рисунок 3 – Обработка отверстий на вертикально-сверлильном станке

При развёртывании в резании участвует большое число зубьев одновременно. Развёртывание характеризуется небольшой глубиной резания = 0,05…0,3 мм, что способствует малой шероховатости и высокому качеству обработки.

Нарезание внутренней резьбы на сверлильных станках осуществляют машинными метчиками. Рабочая часть метчика имеет форму винта с продольными и винтовыми канавками, благодаря которым образуются режущие кромки.

При сверлении, зенкеровании и развертывании обычно режущему инструменту сообщают главное движение резания – вращающее движение режущего инструмента и движение подачи – осевое перемещение режущего инструмента. При нарезании резьбы метчиками инструмент получает только вращательное движение, а принудительная подача отсутствует, т.к. метчик –инструмент самоподающийся.

Точность и качество поверхности при различных видах обработки приведены в таблице 1.

Вид обработкиПараметр шероховатости Rа, мкмКвалитет
Сверление до 15 мм:
без кондуктора12,5…6,314…12
по кондуктору12,5…6,3
Сверление свыше 15 мм:
без кондуктора25…12,514…12
по кондуктору
Зенкерование:
черновое25…12,515…12
чистовое6,3…3,211…10
Развёртывание:
получистовое12,5…6,310…9
чистовое3,2…1,67…8
тонкое0,8…0,47…6

2.3 Приспособления для закрепления режущего инструмента и заготовок

Режущие инструменты закрепляют в шпинделе станка с помощью различных приспособлений. использование на одном станке режущего инструмента разных диаметров становится возможным благодаря переходным втулкам, которые обеспечивают закрепление инструмента, имеющего цилиндрический хвостовик в коническом отверстии шпинделя. Для инструментов с цилиндрическим хвостовиком применяют патроны двух типов – трёхкулачковые и цанговые.

Для установки и закрепления заготовок применяют машинные тиски, угольники, поворотные столы, прихваты, призмы и другие приспособления. В серийном производстве часто используют специальные приспособления –кондукторы. Применение кондукторов позволяет повысить точность обработки и увеличить производительность труда. В единичном производстве применяют сверление по разметке.

Для направления инструмента строго по оси отверстия служат кондукторные втулки из инструментальной закалённой стали.

Режимы резания

К режиму резания при сверлении, рассверливании, зенкеровании, развёртывании относятся: скорость резания , подача , глубина резания . За скорость резания принимают окружную скорость точки режущего лезвия, наиболее удаленной от оси сверла

, м/мин,

где –- диаметр сверла, мм;

– частота вращения сверла, об/мин.

Скорость резания зависит от механических свойств обрабатываемого материала, материала режущей части сверла, его диаметра, величины подачи, стойкости инструмента, условий охлаждения, глубины резания и других факторов и назначается по нормативам. Так, сверла, изготовленные из быстрорежущей стали марки Р6М5, допускают скорость резания при обработке стали до 30 м/мин, для твердосплавного инструмента – до 40…80 м/мин.

Рисунок 3 – Схема сверления и элементы режимов резания

Подача на оборот , мм/об, (рисунок 3) равна величине перемещения сверла вдоль оси за один оборот. Поскольку сверло имеет две главные режущие кромки, то подача, приходящаяся на одну режущую кромку мм/зуб, рассчитывается по формуле

.

Глубиной резания при сверлении отверстий называется наименьшее расстояние между обрабатываемой и обработанной поверхностями, измеряемое по нормали к обработанной поверхности

При рассверливании глубина резания

где – диаметр сверла, мм;

– диаметр ранее просверленного отверстия, мм.

Основное (или технологическое) время при сверлении отверстий в сплошном материале определяется по формуле

, мин

где – расчетная длина рабочего хода инструмента в направлении подачи;

,

где – длина обрабатываемой поверхности; – величина подвода;

– величина перебега.

Выбор режима резания

Играет наиболее важную роль угол при вершине 2φ. Сверла работают в худших условиях, чем резцы – затруднен отвод стружки и подвод СОЖ к режущим кромкам, возникают большие трения о поверхность канавок сверла и сверла о поверхность отверстия.

  1. Сверла из инструментальной стали имеют различный угол при вершине 2φ, при обработке – стали (116-120°); чугуна (90-100°); алюминиевых сплавов (130-140°).С уменьшением угла при вершине 2φ увеличивается активная длина главных режущих лезвий, что способствует лучшему теплоотводу (важно учитывать при сверлении древесно-слоистых пластиков и пластмасс), но при этом теряется прочность.
  2. Определяют максимальную подачу: для сквозных отверстий берут меньше, чем для глухих. При сверлении глубоких отверстий подачу уменьшают. Учитывается требование к чистоте обработки. При получении более чистой поверхности подачу уменьшают (выбирают из справочников).
  3. Период стойкости сверла (продолжительность работы в мин без переточки).

Элементы срезаемого слоя:

  • в – ширина срезаемого слоя, расстояние между обработанной и необработанной поверхностями по режущей кромке;
  • а – толщина срезаемого слоя, расстояние между двумя положениями соседних режущих кромок, измеренное перпендикулярно к главной режущей кромке.

При сверлении отверстий на сверлильных и токарных станках достигается наибольшая точность по 10 квалитету. Экономически достигаемая точность составляет 11-13 квалитетов. Шероховатость поверхности по параметру Rz от 90 до 20 мкм. Rz – высота неровностей профиля по 10 точкам.

Повысить точность можно сверлением отверстий в кондукторах. Таким образом обработка сверлами обеспечивает низкую точность и чистоту поверхности; в ряде случаев применение сверл для рассверловки, особенно в литых корпусных деталях не рационально из–за их поломок.

Приспособления для крепления заготовок

Важным моментом в металлорезании является установка на станке и крепеж деталей, подлежащих обработке. Детали устанавливаются на специальных приспособлениях, в том числе:

  • на тисках – машинных, эксцентриковых, винтовых, пневматических;
  • призмах;
  • угольниках;
  • упорах;
  • кондукторах.

В зависимости от быстроты и силы крепления, выбираются ручные (на небольших производствах) либо пневматические приспособления, обеспечивающие высокую скорость установки и крепления.

Наиболее приспособленными для быстрой установки заготовок являются тиски действующие на основе рычажно-кулачкового механизма. Зажим детали между подвижной и неподвижной губками происходит за счет перемещения подвижной губки, которая подвижно соединена с двойным кулачком и эксцентриковым валиком. Одним передвижением рукоятки в горизонтальном направлении достигается жесткий зажим детали в нужном положении.

Быстродействующие машинные тиски с рычажно-кулачковым зажимом

Рис. 7. Быстродействующие машинные тиски с рычажно-кулачковым зажимом: 1 – корпус; 2 – поворотная часть; 3 – неподвижная губка; 4 – винт; 5 – губка; 6 – рукоятка; 7 – эксцентриковый вал; 8 – двойной кулачок; 9 — основание

Кондукторы

Важным приспособлением для точного центрирования осей инструмента и обрабатываемого отверстия являются кондукторы. Кондуктор устанавливается над деталью с небольшим зазором для отвода стружки и крепится на столе станка. В теле кондуктора расположены отверстия, внутри которых размещены кондукторные втулки, выполненные из особо твердых сортов стали, прошедших термообработку (20Х, У10А).

Кондукторные втулки

Рис. 8. Кондукторные втулки: а — постоянные; б – быстросменные

Постоянные и быстросменные втулки служат для обеспечения точного направления режущей части инструмента в соответствии с заданными параметрами. Существуют специальные требования к расстоянию между деталью и кондуктором, в зависимости от обрабатываемого материала и качества стружки при его обработке. Для деталей из чугуна предполагается зазор 0,3-0,5 от величины диаметра втулки кондуктора. Зазор увеличивается и может достигать размеров диаметра втулки, если в качестве обрабатываемого материала применяется сталь, сплавы меди и алюминия и др.

В конструкции кондуктора предусматриваются корпус и плита, которые, в зависимости от назначения, могут быть:

  • Съемными (подлежащими замене при изменении параметров заготовки).
  • Подвесными, удобными при работе с многошпиндельными сверлильными головками. Подвесная плита насаживается на две направляющие скалки. Установленная в шпинделе станка сверлильная головка оснащена втулками, которые совмещаются с верхними концами скалок.
  • Подъемными, которые передвигаются на скалках, запрессованных в корпус кондуктора, при помощи пневмопривода.
  • Поворотными (для удобства снятия и установки каждой последующей детали).
  • Постоянными (закрепленными в корпусе кондуктора при помощи крепежных элементов или сварки).

Кондукторы существенно облегчают труд рабочих, отменяя подготовительные работы по разметке и точной переустановке деталей при выполнении операций на оборудовании сверлильной группы, обеспечивая точность направления режущего инструмента. В соответствии с технологией обработки и условиями производства применяются кондукторы различной конструкции, получившие названия:

  • поворотных.
  • скользящих.
  • опрокидываемых.
  • накладных.

Наиболее распространенными приспособлениями являются накладные кондукторы, которые накладываются на обрабатываемую деталь и фиксируются при помощи металлических пальцев в положении, обеспечивающем выполнение операции в соответствии с технологической картой. Деталь предварительно фиксируется на рабочем столе при помощи соответствующего приспособления, обеспечивающего центрирование направляющих втулок кондуктора с осями высверливаемых в детали отверстий. Кондукторы этого вида могут крепиться на рабочем столе (закрепляемые), либо устанавливаться на фиксирующих пальцах (незакрепляемые).

Незакрепляемый накладной кондуктор

Рис. 9. Незакрепляемый накладной кондуктор: 1 и 2 – фиксирующие пальцы; 3 – направляющие втулки; 4 – кондукторная плита; 5 – базовая поверхность приспособления; 6 – отверстия

Поворотная оснастка

Для удобства обработки деталей в соответствии с выбранной технологией применяется соответствующая поворотная и передвижная оснастка, которая существенно облегчает работу, не требуя переустановки деталей для сверления или выполнения других операций по качественной обработке отверстий. В таких случаях предполагается использование специальных стоек и столов, в том числе нормализованных, поворотных и передвижных. Это достаточно сложные конструкции, в составе которых находятся съемные, в том числе поворотные кондукторы. Кондукторы выполняют при этом роль элементов, направляющих режущий инструмент при производстве соответствующих операций. Основными приспособлениями, предназначенными для перемещения на станке закрепленных обрабатываемых деталей в соответствии с требованиями технологического процесса, являются:

  • поворотные стойки с горизонтальной осью вращения планшайбы, в которой закрепляются заготовки;
  • поворотные столы, вращающиеся вокруг вертикальной оси и расположенные в горизонтальном положении.

Универсальные приспособления

Универсально-сборными приспособлениями (УСП) пользуются при выполнении различных операций по резанию металлов. УСП – специальные приспособления, удерживающие заготовку в положении, необходимом для обеспечения точной обработки деталей. Универсальность заключается в возможности быстрой установки заготовки, а в случае необходимости – в быстрой переналадке устройства.

Важным устройством, обеспечивающим возможность выполнения нескольких одновременных или последовательных операций на станочном оборудовании, являются многошпиндельные сверлильные головки. Указанные приспособления применяются на крупных производствах, для просверливания отверстий и их последующей обработки, что приводит к реальному ускорению процесса изготовления деталей сложной конфигурации.

Револьверные сверлильные головки могут содержать различное количество шпинделей, оснащенных режущим инструментом в соответствии с технологической программой, предусматривающей последовательное выполнение операций. При этом возможна настройка собственной скорости вращения для каждого шпинделя в отдельности. Кроме того, обеспечивается подача инструмента с определенной скоростью в прямом и обратном направлениях. Такая конструкция головки обеспечивает возможность работы и выполнения запрограммированных операций без переналадки. Револьверные головки обеспечиваются сменными шпинделями с различными конструктивными возможностями, используемыми в технологическом процессе обработки резанием сложных по конфигурации деталей с необходимой точностью и чистотой поверхности.

Рис. 10. Шестишпиндельная револьверная головка: 1 – фиксатор; 2 – рычаг фиксатора; 3 – ведущая полумуфта; 4 – рычаг муфты; 5 – корпус основной; 6 – стержень; 7, 8 – упорные винты; 9 – рейка; 10 – зубчатое колесо; 11 – коническая зубчатая передача; 12 – храповой механизм; 13 – зубчатый вене; 14 – поворотный корпус; 15 – шпиндель головки

Поворот и подача инструментов, установленных в каждом шпинделе, осуществляется в запрограммированном автоматическом режиме, для этого нет необходимости останавливать оборудования для последующей переналадки. Обслуживание станков с такими сложными приспособлениями требует высокой квалификации станочников и технологов, разрабатывающих технологический процесс резания. Последовательность операций выполняется в соответствии с программой: поворот головки и подача инструмента в вертикальном направлении выполняется в необходимом режиме и соблюдением скорости вращения и подачи инструментов. После выполнения определенной операции головка поднимается, осуществляет поворот для следующей операции.

Зенкерование

Как отметили, зенкерование – это процесс обработки отверстий, предварительно полученных литьем, ковкой, штамповкой и т.п.

Это многолезвийный инструмент число зубьев у зенкера (3-9). Уменьшается размер каждого зуба, увеличивается толщина сердцевины, увеличивается прочность. Соответственно – увеличение числа зубьев и жест кости обеспечивает более устойчивое положение зенкера при обработке отверстий, полученных литьем, ковкой. За счет уменьшения толщины срезаемого слоя достигается точность 10 квалитета 20-15 мкм по Rz.

Режимы резания выбираются аналогично сверлению.

Рисунок 4.5 – Инструменты для обработки отверстий на сверлильных станках:

а – сверло; б, в – зенкеры; г, д, е – развертки; ж – метчик; з – комбинированный зенкер с пластинками из твердого сплава

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: