Электронный штангенциркуль – устройство, принцип работы, для чего нужен этот инструмент?

Электронный штангенциркуль – устройство, принцип работы, для чего нужен этот инструмент?

В настоящее время для получения точных результатов измерений используют много приборов, к ним относится электронный штангенциркуль. В отличие от своих предшественников, он показывает точные до 0,1 мм данные и при этом сам процесс занимает намного меньше времени. Главное, правильно подобрать подходящую модель.

Устройство электронного штангенциркуля

Универсальный прибор, использующийся для измерения линейных размеров, имеет дисплей, на котором отображаются итоговые данные. Используют его, когда нужно определить точные параметры, небольших предметов, например, гаек, болтов и так далее. Такая техника при высокой стоимости – отличная альтернатива механическому инструменту. Основные элементы аналогичны с теми, что есть в обычных моделях, но при этом присутствует несколько дополнительных частей. Как устроен электронный штангенциркуль:

  • губки;
  • штанга;
  • движущаяся рамка;
  • ролик для изменения длины замера;
  • батарейка;
  • электронный дисплей;
  • кнопка вкл/выкл;
  • реле переключения единиц измерения.

Недостатки оборудования

Работоспособность этой техники находится в зависимости от источника электропитания, что мешает в самое неподходящее время. Также цена приспособления гораздо больше, нежели у механического инструмента, что обуславливает преимущественно профессиональную сферу его применения. Устройство характеризуется высокой чувствительностью к падениям, вибрациям и механическим воздействиям, потому что эти факторы оказывают влияние на состояние электронного прибора для считывания данных. Сбои, связанные с программной средой, тоже могут привести к потере работоспособности.

Недостатки оборудования, как правило, относятся лишь к дешевым моделям китайского производства. Специалисты отмечают малую износостойкость, плохое качество и хрупкость материала. В некоторых ситуациях на дисплее могут случаться скачки показателей, а также неразбериха в сотых долях значений, потому для работы с таким прибором нужно иметь некоторую сноровку. Однако дорогостоящие и качественные штангенциркули лишены этих недостатков.

Принцип работы электронного штангенциркуля

Главное назначение устройства – выполнение точных замеров с разных сторон, а также по глубине. Если углубиться в вопрос, как работает электронный штангенциркуль, отметим такие моменты:

  1. Верхняя пластина является общим электродом. В ней есть пара конденсаторов, и они активируются по-очереди.
  2. Для обеспечение емкостного массива используется несколько пластин, определяющих все передвижения датчика.
  3. Вращающийся элемент – ползунок, а неподвижный элемент расположен на линейке.
  4. Ползунок и цифровой блок находятся на движущейся части инструмента.
  5. В памяти штангенциркуля находится программа, которая активируется при включении цифрового модуля. Она расшифровывает полученные данные и выводит их на экран.

Штангенциркуль нониусный тип ШЦ-I

Штангенциркуль типа ШЦ-1 с двусторонним расположением губок и специальной линейкой, используется для измерения внутренних и наружных поверхностей а также глубины отверстий с отсчетом по нониусу в 0.02 мм. Нониусный штангенциркуль ШЦ-1 соответствует требованиям ГОСТ 166-89 и внесен Госреестр средств измерения за №41093-09. мм. Методика поверки штангенциркулей регламентирована ГОСТ 8.113-85.

Погрешность измерений по основной шкале для штангенциркулей 1 класса точности составляет 0,05мм, для 2 класса 0,1мм. Диапазон измерений от 0 до 300мм в зависимости от модели. При необходимости может быть выдано свидетельство о поверке.

Основные технические характеристики приведены в таблице:

ПараметрыШЦ1-125ШЦ1-150ШЦ1-200ШЦ1-250ШЦ1-300
А, мм17,517,518,822,822,8
В, мм4040506065
С, мм14,515,5171717
Диапазон измерений, мм0-1250-1500-2000-2500-300
Значение отсчета по нониусу, мм0,050,050,050,050,05
Погрешность, +-мм0,030,030,030,040,04
Отклонение от плоскостности и параллельности измерительных поверхностей губок для измерения наружных поверхностей, мм0,0040,0040,0040,0040,004
Отклонение от параллельности измерительных поверхностей губок для измерения внутренних поверхностей, мм0,040,040,040,040,04
Расстояние между губками для измерения внутренних поверхностей, мм10 +0,0410 +0,0410 +0,0410 +0,0510 +0,05
Погрешность при измерении глубины, мм0,050,050,050,050,05
Кол-во шт в упаковке5050502020
Вес упаковки, кг1415181415
Габариты упаковки, см47х23х2347х26х2357x32x2543х23х2544х28х30

Для чего нужен электронный штангенциркуль?

Прибор используют, когда необходимо произвести точные измерения деталей, например, можно узнать диаметр кольца или шайбы, определить глубину отверстий и так далее. Универсальный измерительный прибор применяют при ремонте деталей машин и оборудования, изготовлении разных элементов, обработке изделий из разных материалов, в слесарном производстве, строительстве и так далее.

как устроен электронный штангенциркуль

Как пользоваться штангенциркулем: пошаговая инструкция

Штангенциркуль используется для определения наружных и внутренних диаметров, линейных размеров, глубин канавок и отверстий, а также расстояний между уступами. Некоторые модификации позволяют наносить разметку на поверхности заготовок. Инструмент применяется для измерения обрабатываемых деталей на механических и слесарных производственных участках, контроля выработки изнашиваемых поверхностей при проведении ремонта оборудования, благодаря простоте в освоении используется в домашних мастерских.

Какой электронный штангенциркуль лучше выбрать?

Приобретая такой инструмент, важно понимать задачи, которые в будущем будут решаться с его помощью. Определяясь с тем, какой выбрать электронный штангенциркуль, нужно узнать основные характеристики устройства, которые указываются в прилагаемой инструкции:

  • диапазон измерений;
  • стоимость прибора;
  • погрешность полученных данных.

Внешний осмотр проводят по таким показателям:

  1. Вид
    . Устройство должно быть похоже на то, фото которого находится на сайте изготовителя. Номер на корпусе указывает на страну-производителя.
  2. Подвижная рамка
    . Должна быть выполнена из прочного материала: стали, сплава алюминия или титана.
  3. Губки
    . Поверхность должна быть отшлифована, наличие повреждений не допускается. При сведении дисплей должен показывать 0.
  4. Точность
    . Хороший электронный штангенциркуль наделен отличными показателями. Проверку проводят с помощью измерения предмета, параметры которого известны.
  5. Комплектность
    . Проводят проверку документов, паспорта о калибровке, пластикового кейса.

К полезному функционалу электронного штангенциркуля относят:

  • автоматическое вкл/выкл;
  • переключение единиц измерений;
  • получение относительных данных;
  • переключение режима;
  • вывод результатов на другое устройство.

Рейтинг электронных штангенциркулей

Среди всех предложенных на рынке моделей, профессионалы и потребители выделяют:

  1. ЗУБР ЭКСПЕРТ 34463-150
    . Показывает измерения с точностью до 0,01 мм. Экран закрыт в металлическом корпусе. С помощью колесика можно работать одной рукой. Можно измерять предметы до 150 мм.
  2. ЗУБР ЭКСПЕРТ 34463 150

  3. ADA INSTRUMENTS MECHANIC 150 PRO
    . Цифровой штангенциркуль с полностью металлическим корпусом. Измеряет предметы, размер которых достигает 150 мм. Благодаря ролику губки двигаются максимально плавно.
  4. STAYER 34410-150
    . Корпус собран из пластика. Измерения проводятся благодаря движению рычага под электронным блоком. Величина измерения до 150 мм.
  5. KRAFTOOL 34460-200
    . Отличается повышенной надежностью сборки. Может измерять величину предметов до 200 мм. Тонкие губки, позволяют использовать электронный штангенциркуль в труднодоступных местах.
  6. NORGAU 040051020
    . Самый лучший ШЦЦ, наделенный высокими показателями точности полученных данных. Подходит для деталей до 200 мм. Корпус дисплея защищен от влаги и пыли.

Arduino по-китайски или штангенциркуль по-Ардуински

Доброго времени суток! Уже более полугода владею дешёвым китайским электронным штангелем 150мм, в инструкции к которому написана фраза «digital interface». Возможность вывода на компьютер заинтересовала сразу, но созрел я на этот подвиг только сейчас.

Изначально мотивацией являлось просто любопытство, «чтоб было!» и «вдруг кто спросит, а у меня есть!», позже (уже по факту «получилось!») нашлось и реальное применение в проекте с самодельным ЧПУ-станочком.

Вводная

Главный герой
, не смотря на свою дешевизну (около 8$), тем не менее, является очень точным прибором:

Принцип работы: емкостной датчик. Всё связано с перемещением малой пластины (головка штангеля) вдоль большой (шкала штангеля), при этом незаряженная часть большой пластины заряжается и вроде как заряд протекающий через образованный этими пластинами конденсатор пропорционален перемещению малой пластины. Как-то так.

Поиск

Начальные поиски информации о цифровом интерфейсе показали что многие его видели, кое-кто даже в курсе, но никто не знает как им пользоваться.
Углубленный поиск по не русскоязычным ресурсам дал более продуктивные результаты. Как казалось по началу — всё достаточно просто и понятно, разжёвано осциллографами, снято на ютубе и т.д., однако конечного и рабочего «сходу» варианта не нашлось.

Так что, основной проблемой стал поиск информации. Второй проблемой стало изготовление вилки к этому разъёму (который, в общем-то и не разъём совсем, а просто голые дорожки на плате). Контакты упорно не желали держаться. В конце-концов догадался воткнуть в кусочек стёрки лапки от LPT-порта. Штука получилась ненадёжной, но для теста вполне годной. На будущее решил в обязательном порядке подпаяться напрямую к плате и вывести свой разъём (штыревой CD-IN от материнки).

Решение

Наткнувшись на статью на instructables.com решился повторить этот подвиг.
Для начала приведу нагло стыренные оттуда картинки с расположением контактов на циркуле и принципиальную схему подключения (не вижу смысла перерисовывать самому, а выдавать за своё — вообще непростительно):

Пины:

Схема:

Для согласования напряжений я использовал резистор 200Ом как и было рекомендовано. Конденсатора на 10мкФ не нашлось и я поставил 100мкФ выпаянный с мёртвой материнки.

Результат

Справившись с пайкой, приступил к написанию скетча. К слову сказать, в отсутствие макетной платы вышел из положения, собрав схему на «кроватке» от IDE-порта, с той же материнки.
Скетч, приведённый в вышеуказанной статье заработал без вопросов, но удовлетворения не принёс. Китайский скетч из комментариев, работать «сходу» — отказался, но производил гораздо более серьёзное впечатление, вследствие чего, подвергся серьёзному «допиливанию».

Вот что из этого получилось

(или готовый скетч для Arduino UNO, версия IDE 0022):
//CyberKot (он же… я же! Shadow) //Скетч Arduino, выводящий данные с циркуля в COM-порт //Версия для хабра int dataIn = 11; //шина данных, можно менять int clockIn = 2; //шина clock, не трогать, так надо (читайте про attachInterrupt) int isin = 0; //д=1 мм=0 int isfs = 0; //минус int index; //счётчик битов unsigned long xData, oData; //новые показания и старые (потом будет понятно зачем) int ledPin = 13; //мигалка на 13й вход (встроенная, чтоб понятно было, что ничего не повисло) int ledState = LOW; //статус мигалки long previousMillis = 0; //когда последний раз мигали long interval = 500; // интервал мигания long previousGetMillis = 0; long Timeout = 8; //таймаут чтения битов в мс float stringOne; //временные переменные для вывода char charBuf[5]; char charBuf2[8]; void setup(){ digitalWrite (dataIn, 1); digitalWrite (clockIn, 1); pinMode (dataIn, INPUT); //привязываем шину данных на dataIn pinMode (clockIn, INPUT); //и clock на 2й вход attachInterrupt(0,getBit,RISING); //и аттачим clock также на 2й вход Serial.begin(9600); delay(500); index = 0; xData = 0; oData = 999; } void loop(){ if ((index !=0) && (millis() — previousGetMillis > Timeout) ) { //обнуление по превышению таймаута index = 0; xData = 0; }; if (index >23) { //если слово считано полностью if (oData !=xData) { /* Этот вариант более изящен, по моему мнению, но съедает лишний килобайт if (isin==1){ //дюймы Serial.print(«inch: «); stringOne =xData*5/10000.00000; stringOne *=pow(-1,isfs); Serial.println(floatToString(charBuf2,stringOne,5,5)); }else { //мм Serial.print(«mm: «); stringOne =xData/100.00; stringOne *=pow(-1,isfs); Serial.println(floatToString(charBuf,stringOne,2,5)); }; */ if (isin==1){ //дюймы if (isfs==1){ //минус Serial.print(«inch: -«); }else { Serial.print(«inch: «); } stringOne =xData*5/10000.00000; Serial.println(floatToString(charBuf2,stringOne,5,5)); }else { //мм if (isfs==1){ //минус Serial.print(«mm: -«); }else { Serial.print(«mm: «); } stringOne =xData/100.00; Serial.println(floatToString(charBuf,stringOne,2,5)); }; }; oData =xData; index=0; xData=0; }; if (millis() — previousMillis > interval) { //мигалка previousMillis = millis(); if (ledState == LOW) ledState = HIGH; else ledState = LOW; digitalWrite(ledPin, ledState); } } void getBit(){ //чтение битов и флаги previousGetMillis=millis(); if(index < 20){ if(digitalRead(dataIn)==1){ xData|= 1<< precision; i++) { roundingFactor /= 10.0; mult *= 10; } temp[0]=’\0′; outstr[0]=’\0′; if(val < 0.0){ strcpy(outstr,»-\0″); val = -val; } val += roundingFactor; strcat(outstr, itoa(int(val),temp,10)); // целая часть if( precision > 0) { strcat(outstr, «.\0″); // дробная unsigned long frac; unsigned long mult = 1; byte padding = precision -1; while(precision—) mult *=10; if(val >= 0) frac = (val — int(val)) * mult; else frac = (int(val)- val ) * mult; unsigned long frac1 = frac; while(frac1 /= 10) padding—; while(padding—) strcat(outstr,»0\0»); strcat(outstr,itoa(frac,temp,10)); } // пробелы (для форматирования) if ((widthp != 0)&&(widthp >= strlen(outstr))){ byte J=0; J = widthp — strlen(outstr); for (i=0; i< J; i++) { temp = ‘ ‘; } temp[i++] = ‘\0’; strcat(temp,outstr); strcpy(outstr,temp); } return outstr; }

Итог

Удовлетворившись результатом, решил сделать финальное фото, и немного «босяцкой» рекламы для эффекта:

Послесловие

В описании протокола содержится ещё пара интересных плюшек, поэтому есть стимул для задела «на будущее»

  • быстрый режим (50Гц, против 3Гц в умолчальном режиме)
  • обработка «абсолютного» положения
  • программные кнопки «Zero» и «Mode»

[Ссылки]

  • протокол штангеля
  • ворк-лог товарища j44

Штангенциркуль нониусный тип ШЦ-III

ШЦ-3 — односторонний штангенциркуль с возможностью разметки деталей и определения внутренних и внешних размеров. Нониусный штангенциркуль ШЦ-3 соответствует требованиям ГОСТ 166-89 и внесен Госреестр средств измерения за №41094-09. Диапазон измерения от 0 до 2000мм в зависимости от модели. По запросу может быть выдано свидетельство о поверке.

Основные технические характеристики ШЦ-3 приведены в таблице:

ПараметрыШЦ-III-250ШЦ-III-400ШЦ-III-500ШЦ-III-630ШЦ-III-800ШЦ-III-1000ШЦ-III-1600ШЦ-III-2000
A мм.60100100100100100125150
B мм.1010101020202020
C мм.1012121218181820
Диапазон измерений, мм.0-2500-4000-500250-630250-800320-1000500-1600800-2000
Значение отсчета по нониусу, мм.0,050,050,050,050,050,050,050,05
Погрешность, +_ мм.0,040,040,050,050,060,070,10,1
Отклонение от плоскостности и параллельности измерительных поверхностей губок для измерения наружных поверхностей, мм.0,0040,0040,0040,0040,0040,0040,0040,004
Отклонение от параллельности измерительных поверхностей губок для измерения внутренних поверхностей, мм.0.020.020.020.020.020.020.020.02
Расстояние между губками для измерения внутренних поверхностей, мм.10 +0.0210 +0,0210 +0,0210 +0,0220 +0,0320 +0,0320 +0,0320 +0,03
Кол-во шт. в упаковке301010105552
Вес упаковки, кг.2216171921243032
Габариты упаковки, см.48х42х2972х44х1771х44х1683х44х17131х29х21131х29х21193х24х18245х34х11245 х34х11

Советы по проведению измерений

До того как приступить к измерениям, необходимо хорошо осмотреть сам штангенциркуль и убедиться в его исправности. Первым делом губки сводятся в свое начальное положение. При этом стоит оценить, на каком делении находится нулевая линия, если по шкале нониуса она совпадает со стартовым значением, тогда все хорошо. Визуально осматривается поверхность губок. На них не должно быть зазубрин, а между ними не должно быть пространства, они должны хорошо смыкаться. Именно в этом случае можно будет говорить о минимальной погрешности и идеально точном результате в отношении производимой детали. Желательно, чтобы измеряемая деталь была прочно закреплена в тисках. Это позволит избежать ее смещения в процессе, что могло бы повлиять на цифры. Ее необходимо поместить между рабочими губками и свести первые. Для металлов и пластика необходимо приложить усилие, чтобы губки подошли вплотную. Если измерение проводится на древесине или другом мягком материале, тогда излишнее усилие только навредит.

Совет! Чтобы было легче сдвигать шкалу нониуса, в конструкции предусматривается специальное колесико. Штангенциркуль нужно удерживать за линейку плоскостью ладони, а колесико двигать большим пальцем. После замера не забудьте зафиксировать полученный результат болтиком сверху. Пример считывания показаний можно посмотреть на видео

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: