Физические параметры алюминия и температура плавления.


люминий
Атомный номер13
Внешний вид простого веществамягкий лёгкий металл серебристо-белого цвета
Свойства атома
Атомная масса (молярная масса)26,981539 а. е. м. (/моль)
Радиус атома143
Энергия ионизации (первый электрон)577,2(5,98) кДж/моль ()
Электронная конфигурация[Ne] 3s2 3p1
Химические свойства
Ковалентный радиус118
Радиус иона51 (+3e)
Электроотрицательность (по Полингу)1,61
Электродный потенциал-1,66 в
Степени окисления3
Термодинамические свойства простого вещества
Плотность2,6989 /³
Молярная теплоёмкость24,35[1]/(·моль)
Теплопроводность237 /(·)
Температура плавления933,5
Теплота плавления10,75 кДж/моль
Температура кипения2792
Теплота испарения284,1 кДж/моль
Молярный объём10,0 ³/моль
Кристаллическая решётка простого вещества
Структура решёткикубическая гранецентрированая
Параметры решётки4,050
Отношение c/a
Температура Дебая394
Al13
26,981539
[Ne]3s23p1
Алюминий

Алюми́ний

— элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, атомный номер 13. Обозначается символом Al ( Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости (после кислорода и кремния) химический элемент в земной коре. Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия. По некоторым биологическим исследованиям поступление алюминия в организм человека было сочтено фактором в развитии болезни Альцгеймера, но эти исследования были позже раскритикованы и вывод о связи одного с другим опровергался.

Получение

Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Для производства 1 т алюминия чернового требуется 1,920 т глинозёма, 0,065 т криолита, 0,035 т фторида алюминия, 0,600 т анодной массы и 17 тыс. кВт·ч электроэнергии постоянного тока.

Физические свойства

Металл серебристо-белого цвета, лёгкий, плотность — 2,7 г/см³, температура плавления у технического алюминия — 658 °C, у алюминия высокой чистоты — 660 °C, удельная теплота плавления — 390 кДж/кг, температура кипения — 2500 °C, удельная теплота испарения — 10,53 МДж/кг, временное сопротивление литого алюминия — 10-12 кг/мм², деформируемого — 18-25 кг/мм², сплавов — 38-42 кг/мм².

Твёрдость по Бринеллю — 24-32 кгс/мм², высокая пластичность: у технического — 35 %, у чистого — 50 %, прокатывается в тонкий лист и даже фольгу.

Алюминий обладает высокой электропроводностью и теплопроводностью, 65 % от электропроводности меди, обладает высокой светоотражательной способностью.

Алюминий образует сплавы почти со всеми металлами.

Температура плавления, именуемая равновесной

Любые химически чистые металлы, включая алюминий, имеют температурную характеристику, именуемую «точка плавления». Материалы, достигая её, становятся жидкими. Для незначительных объёмов образцов алюминия переход в иное агрегатное состояние происходит настолько быстро (в плане изменения температурного режима), что измерить его можно с точностью до 0,1°С.

Обратная процедура, предусматривающая переход в твёрдое состояние, происходит при достижении «точки затвердевания». При равновесных условиях, при чисто теоретическом допущении, её значение равно температуре плавления. Фактически между этими значениями существуют незначительные разбросы.

Нахождение в природе

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al со следами 26Al, радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при бомбардировке ядер аргона

протонами космических лучей.

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах). Некоторые из них:

  • Бокситы — Al2O3 • H2O (с примесями SiO2, Fe2O3, CaCO3)
  • Нефелины — KNa3[AlSiO4]4
  • Алуниты — KAl(SO4)2 • 2Al(OH)3
  • Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)
  • Корунд — Al2O3
  • Полевой шпат (ортоклаз) — K2O×Al2O3×6SiO2
  • Каолинит — Al2O3×2SiO2 × 2H2O
  • Алунит — (Na,K)2SO4×Al2(SO4)3×4Al(OH)3
  • Берилл — 3ВеО • Al2О3 • 6SiO2

В природных водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в поверхностных водных объектах России колеблются от 0,001 до 10 мг/л.

Кратко о процессе

Плавка алюминия в домашних условиях — это не такой уж трудный процесс, которым он может показаться поначалу. Кусочки металла нагреваются до нужной температуры плавки алюминия в специальной емкости.
Некоторое время полученный расплав необходимо выдерживать в разогретом состоянии и периодически удалять с его поверхности образующийся шлак. После этого чистый жидкий металл наливается в специальную форму, в которой он некоторое время будет остывать.

Время, которое уйдет на плавку, зависит от самой печи, а точнее от той температуры, которую она может обеспечить. Если же вместо печи используется газовая горелка, то она должна нагревать металл сверху.

Источник

Химические свойства

Гидроксид алюминия
При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°);O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.

Легко реагирует с простыми веществами:

  • с кислородом: 4Al + 3O2 = 2Al2O3
  • с галогенами: 2Al + 3Br2 = 2AlBr3
  • с другими неметаллами реагирует при нагревании: с серой, образуя сульфид алюминия: 2Al + 3S = Al2S3
  • с азотом, образуя нитрид алюминия: 2Al + N2 = 2AlN
  • с углеродом, образуя карбид алюминия: 4Al + 3С = Al4С3

Сульфид и карбид алюминия полностью гидролизуются:

Al2S3 + 6H2O = 2Al(OH)3 + 3H2S­ Al4C3 + 12H2O = 4Al(OH)3+ 3CH4­

Со сложными веществами:

  • с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи): 2Al + 6H2O = 2Al(OH)3 + 3H2­
  • со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов): 2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2­ 2(NaOH•H2O) + 2Al = 2NaAlO2 + 3H2
  • Легко растворяется в соляной и разбавленной серной кислотах: 2Al + 6HCl = 2AlCl3 + 3H2­ 2Al + 3H2SO4(разб) = Al2(SO4)3 + 3H2
  • При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия: 2Al + 6H2SO4(конц) = Al2(SO4)3 + 3SO2 + 6H2O Al + 6HNO3(конц) = Al(NO3)3 + 3NO2­ + 3H2O
  • восстанавливает металлы из их оксидов (алюминотермия): 8Al + 3Fe3O4 = 4Al2O3 + 9Fe 2Al + Cr2O3 = Al2O3 + 2Cr

Производство

производство алюминия
Одна красивая, но, вероятно, неправдоподобная легенда из «Historia naturalis«

гласит, что однажды к римскому императору Тиберию (42 год до н. э. — 37 год н. э.) пришёл ювелир с металли­ческой, небьющейся обеденной тарелкой, изготовленной, якобы из глинозёма — Al2O3. Тарелка была очень светлой и блестела, как серебро. По всем признакам она должна быть алюминиевой. При этом ювелир утверждал, что только он и боги знают, как получить этот металл из глины. Тиберий, опа­саясь, что металл из легкодоступной глины может обесценить золото и серебро, приказал, на всякий случай, отрубить чело­веку голову. Очевидно, данная легенда весьма сомнительна, так как само­родный алюминий в природе не встречается в силу своей высокой активности и во времена Рим­ской империи не могло быть технических средств, которые позволили бы извлечь алюми­ний из глинозёма.

Лишь почти через 2000 лет — в 1825 году, датский физик Ханс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей пленкой оксида алюминия.

До конца XIX века алюминий в промышленных масштабах не производился.

Только в 1854 году Анри Сент-Клер Девиль изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.

В 1885 году, основываясь на технологии, предложенной русским ученым Николаем Бекетовым, был построен завод по производству алюминия в немецком городе Гмелингеме. Технология Бекетова мало чем отличалась от способа Девиля, но была проще и заключалась во взаимодействии между криолитом (Na3AlF6) и магнием. За пять лет на этом заводе было получено около 58 т алюминия — более четверти всего мирового производства металла химическим путем в период с 1854 по 1890 год.

Метод, изобретённый почти одновременно Чарльзом Холлом во Франции и Полем Эру в США в 1886 году и основанный на получении алюминия электролизом глинозема, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с усовершенствованием электротехники, производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозема внесли русские ученые К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.

Первый алюминиевый завод в России был построен в 1932 году в Волхове. Металлургическая промышленность СССР в 1939 году производила 47,7 тыс.тонн алюминия, ещё 2,2 тыс.тонн импортировалось.

Вторая мировая война значительно стимулировала производство алюминия. Так, в 1939 году общемировое его производство, без учёта СССР, составляло 620 тыс. т, но уже к 1943 году выросло до 1,9 млн т.

К 1956 году в мире производилось 3,4 млн т первичного алюминия, в 1965 году — 5,4 млн т, в 1980 году — 16,1 млн т, в 1990 году — 18 млн т.

В 2007 году в мире было произведено 38 млн т первичного алюминимя, а в 2008 — 39,7 млн т. Лидерами производства являлись: Китай (в 2007 году произвёл 12,60 млн т, а в 2008 — 13,50 млн т), Россия (3,96/4,20), Канада (3,09/3,10), США (2,55/2,64), Австралия (1,96/1,96), Бразилия (1,66/1,66), Индия (1,22/1,30), Норвегия (1,30/1,10), ОАЭ (0,89/0,92), Бахрейн (0,87/0,87), ЮАР (0,90/0,85), Исландия (0,40/0,79), Германия (0,55/0,59), Венесуэла (0,61/0,55), Мозамбик (0,56/055), Таджикистан (0,42/0,42).

В России фактическим монополистом по производству алюминия является ОАО «Русский алюминий», на который приходится около 13 % мирового рынка алюминия и 16 % глинозёма.

Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.

Особенности плавления силумина

Различные сплавы, имеющие широкий температурный интервал между величинами ликвидус (солидус), именуются эвтектическими. Пример. E cплавов на основе Al, в составе которых 12,5 % Si, этот диапазон сокращён до точки плавления. Именно эта температурное значение будет называться эвтектическим. Данный сплав относится к группе силуминов, обладающих литейными свойствами. Её величина составляет 577°С.

Рост процентного содержания Si приводит к снижению величины «ликвидус» от max (значение для чистого Al составляет 660°C) с величиной «солидуса» (577°С).

Среди иных легирующих материалов следует упомянуть Mg. Эвтектической температуры в 450°С можно достичь при его содержании в 18,9%. Для Gu эта температура равна 548°С. Для Mn, 658°С.

Большинство сплавов содержит три и более легирующих элемента. Поэтому рассмотренные температуры могут быть ещё ниже.

Процесс плавления алюминия (его сплавов), весьма сложный технологический процесс. Для получения требуемого результата следует учитывать значительное количество внешних факторов, включая различные температурные характеристики.

Источник

Применение

Кусок алюминия и американская монетка.
Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния — сплав дюралюминий.

Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 2 раза дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Меньшую электропроводность алюминия (37 1/ом) по сравнению с медью (63 1/ом) компенсируют увеличением сечения алюминиевых проводников. Недостатком алюминия как электротехнического материала является прочная оксидная плёнка, затрудняющая спаивание.

  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • Алюминий и его сплавы сохраняют прочность при сверхнизких температурах. Благодаря этому он широко используется в криогенной технике.
  • Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал.
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин, нефтяным платформам, теплообменной аппаратуре, а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода.
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя

  • Как компонент термита, смесей для алюмотермии
  • Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.

Сплавы на основе алюминия

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе.

Алюминиевый прокат

— Алюминиево-магниевые сплавы обладают высокой коррозионной стойкостью и хорошо свариваются; из них делают, например, корпуса быстроходных судов.

— Алюминиево-марганцевые сплавы во многом аналогичны алюминиево-магниевым.

— Алюминиево-медные сплавы (в частности, дюралюминий) можно подвергать термообработке, что намного повышает их прочность. К сожалению, термообработанные материалы нельзя сваривать, поэтому детали самолётов до сих пор соединяют заклёпками. Сплав с бо́льшим содержанием меди по цвету внешне очень похож на золото, и его иногда применяют для имитации последнего.

— Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.

— Комплексные сплавы на основе алюминия: авиаль.

— Алюминий переходит в сверхпроводящее состояние при температуре 1,2 Кельвина.

Алюминий как добавка в другие сплавы

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).

Ювелирные изделия

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Мода на них сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Стекловарение

В стекловарении используются фторид, фосфат и оксид алюминия.

Пищевая промышленность

Алюминий зарегистрирован в качестве пищевой добавки Е173.

Алюминий и его соединения в ракетной технике

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

— Алюминий: горючее в ракетных топливах. Применяется в виде порошка и суспензий в углеводородах и др — Гидрид алюминия — Боранат алюминия — Триметилалюминий — Триэтилалюминий — Трипропилалюминий

Теоретические характеристики топлив, образованных гидридом алюминия с различными окислителями.

ОкислительУдельная тяга (Р1, сек)Температура сгорания °СПлотность топлива, г/см³Прирост скорости, ΔVид, 25, м/сВесовое содерж. горючего, %
Фтор348,450091,504532825
Тетрафторгидразин327,447581,193443419
ClF3287,744021,764476220
ClF5303,746041,691492220
Перхлорилфторид293,737881,589461747
Фторид кислорода326,540671,511500438,5
Кислород310,840281,312442856
Перекись водорода318,435611,466480652
N2O4300,539061,467453747
Азотная кислота301,337201,496459549

Температуры начала и завершения плавления

Эти две величины также необходимо учитывать при рассмотрении вопроса плавления металлов:

  • первая, «солидус» (твёрдый) – это значение температуры, по достижению которой начинается процесс плавления;
  • вторая, «ликвидус» (жидкий) – обозначает показатель, достижение которого приводит к завершению плавления.

Сплавы на основе алюминия, начинают кристаллизоваться при достижении значения, именуемого «ликвидус». Заканчивается отверждение при достижении «солидус». Между этими значениями металл находится в кашицеобразном состоянии.

Токсичность

Отличается незначительным токсическим действием, но многие растворимые в воде неорганические соединения алюминия сохраняются в растворённом состоянии длительное время и могут оказывать вредное воздействие на человека и теплокровных животных через питьевую воду. Наиболее ядовиты хлориды, нитраты, ацетаты, сульфаты и др. Для человека токсическое действие при попадании внутрь оказывают следующие дозы соединений алюминия (мг/кг массы тела): ацетат алюминия — 0,2-0,4; гидроксид алюминия — 3,7-7,3; алюминиевые квасцы — 2,9. В первую очередь действует на нервную систему (накапливается в нервной ткани, приводя к тяжёлым расстройствам функции ЦНС). Однако свойство нейротоксичности алюминия стали изучать с середины 1960-х годов, так как накоплению металла в организме человека препятствует механизм его выведения. В обычных условиях с мочой может выделяться до 15 мг элемента в сутки. Соответственно, наибольший негативный эффект наблюдается у людей с нарушенной выделительной функцией почек.

Норматив содержания алюминия в воде хозяйственно-питьевого использования сотавляет 0,2 мг/л. При этом данная ПДК может быть увеличена до 0,5 мг/л главным государственным санитарным врачом по соответствующей территории для конкретной системы водоснабжения.

При какой температуре плавится алюминий — Справочник металлиста

Алюминий весьма распространенный металл как в промышленности, так и бытовой сфере. Не редко при поломке какой-либо детали возникает потребность в выплавке замены.

Плавка алюминия в домашних условиях привлекательна тем, что возможна при сравнительно невысокой температуре.

Чтобы провести операцию своими руками необходимо знать характеристики металла при воздействии температуры и физико-химические свойства.

Использование самодельной печи для плавки

Самым простым способом является укладка нескольких огнеупорных кирпичей в форме очага. Удобно в качестве каркаса использовать металлическую емкость. На боку следует сделать отверстие для присоединения трубки с подачей воздуха. Подойдет подходящая металлическая труба. К ней нужно подключить пылесос, фен или иной прибор, подающий воздух.

В очаг помещается древесный уголь, разводится огонь и подается воздух. Емкость, в которой будет расплавляться алюминий, помещается в печь. По бокам необходимо также обложить уголь. Оптимальным вариантом будет создание крышки, чтобы зря не терять тепло. Можно сделать только проход для дыма.

Применение кухонной плиты

Для штучного плавления не обязательно создавать свою печку. Достичь необходимой температуры можно даже на бытовом газу. При массе заготовок алюминия для плавки сама процедура не займет более 0,5 часа.

Емкость можно взять любую подходящую, например жестяную банку. В ней размещается измельченный и почищенный алюминий. Однако переплавить алюминий, просто поставив банку на огонь не получится, нужная температура не достигается. Для сохранения тепла придумана следующая схема.

Банку с ломом помещают внутрь еще одной, большего размера, на подпорках так, чтобы сохранялся зазор до 10 мм. В большей банке подготавливаются отверстия 30-40 мм для того, чтобы подходило пламя. При этом рассекатель на горелке снимать не надо.

Полученную конструкцию устанавливают над горелкой. Горящее пламя будет проходить во внутрь большей банки и прогревать емкость с металлом. В этом случае большая жестянка будет играть роль своеобразной оболочки, удерживающей тепло. помещается подходящая крышка, но оставляется зазор, чтобы выходили продукты горения. При нагреве интенсивность пламени нужно регулировать.

Использование тигеля и вспомогательного оборудования

Предыдущий способ хорош, но банка больше одного раза не способна выдержать и может прогореть. В этом случае есть риск разлития металла на горелку.

Чтобы несколько раз работать в печи рекомендуется подготовить особую емкость – тигель. Он выполняется из стали. Вполне можно пользоваться отрезком трубы, у которой заварено дно.

Неплохое устройство получается если использовать обрезанный огнетушитель или небольшой кислородный баллон с овальным профилем.

При этом стоит предусмотреть наличие бокового желоба для сливания расплавленного алюминия.

При этом может потребоваться вспомогательное оборудование, например, пассатижи. Идеальным случаем будет использование боковых зажимов и нижних фиксированных упоров – аналогов промышленных установок. Также потребуется длинная ложка, чтобы снимать шлак.

Открытая методика

Наиболее простой вариант – это перелив расплавленного алюминия в имеющуюся емкость, к примеру, жестяную банку. После того, как металл застынет, слиток изымается. Для облегчения изъятия по еще не остывшей до конца форме необходимо потихоньку простучать.

Если не нужна определенная четкая форма, то можно просто сливать жидкий сплав на негорючую поверхность.

Дополнительная информация

— Гидроксид алюминия — Энциклопедия об алюминии — Соединения алюминия — Международный институт алюминия

Алюминий, Aluminium, Al (13) Вяжущие вещества, содержащие алюминий, известны с глубокой древности. Однако под квасцами (лат. Alumen или Alumin, нем. Alaun), о которых говорится, в частности, у Плиния, в древности и в средние века понимали различные вещества. В «Алхимическом словаре» Руланда слово Alumen с добавлением различных определений приводится в 34 значениях. В частности, оно означало антимоний, Alumen alafuri — алкалическую соль, Alumen Alcori — нитрум или алкалические квасцы, Alumen creptum — тартар (винный камень) хорошего вина, Alumen fascioli — щелочь, Alumen odig — нашатырь, Alumen scoriole — гипс и т. д. Лемери, автор известного «Словаря простых аптекарских товаров» (1716), также приводит большой перечень разновидностей квасцов. До XVIII в. соединения алюминия (квасцы и окись) не умели отличать от других, похожих по внешнему виду соединений. Лемери следующим образом описывает квасцы: «В 1754 r. Маргграф выделил из раствора квасцов (действием щелочи) осадок окиси алюминия, названной им »квасцовой землей» (Alaunerde), и установил ее отличие от других земель. Вскоре квасцовая земля получила название алюмина (Alumina или Alumine). В 1782 г. Лавуазье высказал мысль, что алюмина представляет собой окисел неизвестного элемента. В «Таблице простых тел» Лавуазье поместил алюмину (Alumine) среди «простых тел, солеобразующих, землистых«. Здесь же приведены синонимы названия алюмина: аргила (Argile), квасцовая. земля, основание квасцов. Слово аргила, или аргилла, как указывает Лемери в своем словаре, происходит от греч. горшечная глина. Дальтон в своей »Новой системе химической философии» приводит специальный знак для алюмины и дает сложную структурную (!) формулу квасцов. После открытия с помощью гальванического электричества щелочных металлов Дэви и Берцелиус безуспешно пытались выделить тем же путем металлический алюминий из глинозема. Лишь в 1825 г. задача была решена датским физиком Эрстедом химическим способом. Он пропускал хлор через раскаленную смесь глинозема с углем, и полученный безводный хлористый алюминий нагревал с амальгамой калия. После испарения ртути, пишет Эрстед, получался металл, похожий по внешнему виду на олово. Наконец, в 1827 г. Велер выделил металлический алюминий более эффективным способом — нагреванием безводного хлористого алюминия с металлическим калием. Около 1807 г. Дэви, пытавшийся осуществить электролиз глинозема, дал название предполагаемому в нем металлу алюмиум (Alumium) или алюминум (Aluminum). Последнее название с тех пор ужилось в США, в то время как в Англии и других странах принято предложенное впоследствии тем же Дэви название алюминиум (Aluminium). Вполне ясно, что все эти названия произошли от латинского слова квасцы (Alumen), насчет происхождения которого существуют разные мнения, базирующиеся на свидетельствах различных авторов, начиная с древности.

А. М. Васильев, отмечая неясное происхождение этого слова, приводит мнение некоего Исидора (очевидно Исидора Севильского, епископа, жившего в 560 — 636 гг.,- энциклопедиста, занимавшегося, в частности, этимологическими исследованиями): «Alumen называют a lumen, так как он придает краскам lumen (свет, яркость), будучи добавлен при крашении«. Однако это, хотя и очень давнее, объяснение не доказывает, что слово alumen имеет именно такие истоки. Здесь вполне вероятна лишь случайная тавтология. Лемери (1716) в свою очередь указывает, что слово alumen связано с греческим (халми), означающим соленость, соляной раствор, рассол и пр. Русские названия алюминия в первые десятилетия XIX в. довольно разнообразны. Каждый из авторов книг по химии этого периода, очевидно, стремился предложить свое название. Так, Захаров именует алюминий глиноземом (1810), Гизе — алумием (1813), Страхов — квасцом (1825), Иовский — глинистостью, Щеглов — глиноземием (1830). В »Магазине Двигубского» (1822 — 1830) глинозем называется алюмин, алюмина, алумин (например, фосфорно-кисловатая алюмина), а металл — алуминий и алюминий (1824). Гесс в первом издании «Оснований чистой химии» (1831) употребляет название глиноземий (Aluminium), а в пятом издании (1840) — глиний. Однако названия для солей он образует на основе термина глинозем, например сернокислый глинозем. Менделеев в первом издании »Основ химии» (1871) пользуется названиями алюминий и глиний. В дальнейших изданиях слово глиний уже не встречается.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: