Модуль упругости разных материалов, включая сталь

Основной главной задачей инженерного проектирования служит выбор оптимального сечения профиля и материала конструкции. Нужно найти именно тот размер, который обеспечит сохранение формы системы при минимальной возможной массе под влиянием нагрузки. К примеру, какую именно сталь следует применять в качестве пролётной балки сооружения? Материал может использоваться нерационально, усложнится монтаж и утяжелится конструкция, увеличатся финансовые затраты. На этот вопрос ответит такое понятие как модуль упругости стали. Он же позволит на самой ранней стадии избежать появления этих проблем.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.

Модуль упругости различных материалов

Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.

После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.

Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:

  • Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
  • Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
  • Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
  • Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
  • Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
  • Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
  • И напоследок коэффициент Пуассона для стали равен значению 0,3

Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

Сталь и несколько разных её марок

МатериалПоказатели модуля упругости (Е, G; Н*м2, кг/см^2, МПа)
Сталь20,6*10^10 ньютон*метр^2
Сталь углеродистаяЕ=(2,0…2,1)*10^5 МПа; G=(8,0…8,1)*10^4 МПа
Сталь 45Е=2,0*10^5 МПа; G=0,8*10^5 МПа
Сталь 3Е=2,1*10^5 МПа; G=0,8*10^5 МПа
Сталь легированнаяЕ=(2,1…2,2)*10^5 МПа; G=(8,0…8,1)*10^4 МПа

Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.

Кстати, если не выражать все значения числовыми отношениями, а взять сразу и посчитать полностью, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.

Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.

Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.

Что же такое финики?

Родиной финиковой пальмы является Персидский залив, и известно растение было еще около 6000 лет назад. Дерево это высокое, с очень большими удлиненными листьями и плодами длиной до 7 см и диаметром 2 — 3 см. Внутри продолговатого плода находится косточка 6 — 8 мм. В незрелом состоянии финики или ярко — красного цвета или желтоватого. В мире насчитывается очень много сортов — 1500.

На сегодняшний день главным поставщиком является Саудовская Аравия, хотя финиковые пальмы во многих исламских странах являются вторым хлебом и выращиваются повсеместно: Ирак, Северная Африка, Марокко, ЮАР. Теперь финиковую пальму завезли уже и в Австралию. А также все больше популярен этот сухофрукт и у нас.

  • Китайский финик. Имеет несколько других названий: унаби и ююба. В большинстве используется в азиатских странах: Японии, Китае и Индокитае. Наиболее сильно выражены вкусовые качества, когда плод немного полежит. Именно вяленый он наиболее ароматен. Хотя можно использовать как в свежем виде, так и в сушеном. Плоды очень мясистые и питательные. Часто используется в специях, соусах и национальных блюдах.
  • Канарский. Больше служит декоративным украшением. Также, его используют как лечебное средство при ожогах и кожных заболеваниях.

Классификация фиников

Этот фрукт разделяют на группы в зависимости от мягкости и маслянистости плода:

  • мягкие;
  • полусухие;
  • сухие.

Cтруктура и спелость плода может содержать в своем составе совершенно разный вид сахара:

  1. Финики с мягкой мякотью достаточно быстро могут испортиться, поэтому их высушивают. Они в своем составе содержат инвертный сахар, состоящий из фруктозы и декстрозы.
  2. Полусухие и сухие состоят из тростникового сахара и содержат намного меньше влаги.

Полностью созревший финик — золотисто-коричневый плод с матовой и морщинистой кожицей, напоминающий шоколадную конфету и сладковатый, пряный на вкус. Кстати, если шкурка у него блестит и легко отслаивается, значит его перед перевозкой и реализацией пропитывали сахарным сиропом или другими препаратами, чтобы сохранить и продлить срок годности. Поэтому перед приобретением обязательно внимательно рассмотрите плод.

Упругие деформации. Модуль Юнга и коэффициент Пуассона. Энергия упругой деформации.

Определение начального модуля упругости бетона в20, в25
Все тела деформируемы

. Изменения, вызванные действиями приложенных сил, при которых тела меняют форму и объем –
деформации
.

Упругие
деформации
– деформации, которые исчезают, после прекращения действия приложенной силы.

Пластические деформации

(
остаточные деформации
) – деформации, которые сохраняются в теле (частично или полностью) после прекращения действия приложенной силы.

Если напряжение

(сила, отнесенная к единице площади) не превышает некоторой величины (
предел упругости
), то деформация будет упругой.

Идеально упругие

тела – тела, которые могут претерпевать только упругие деформации. Для таких тел
существует однозначная зависимость между силами и вызываемыми ими деформациями
.

Малые деформации

– деформации, которые подчиняются
закону Гука
, согласно которому

деформации пропорциональны силам, их вызывающимизотропныеанизотропные

Пусть есть два стержня. Один сжимаем, а другой сдавливаем с силой (как на рисунке). Перпендикулярно к оси стержня проведем сечение . Для равновесия стержня , на его нижнее основание должна действовать сила . Нижняя и верхняя части стержня действуют друг на друга с равной силой , т.к. они деформированы. Отношение силы к площади поперечного сечения ­– напряжение

.

Натяжение

– напряжение при натяжении, .

Давление

– напряжение при сжатии , где площадь сечения. Давление – отрицательное напряжение и наоборот .

– длина недеформированного стержня. – приращение длины, после приложения силы . Значит полная длина . – относительное удлинение стержня (если – относительное сжатие).

Для малых упругих деформаций натяжение (давление ) пропорционально относительному удлинению (относительному сжатию) —

(),

где – модуль Юнга

(постоянная, зависящая только от материала стержня и его физического состояния).

Модуль Юнга

– натяжение, которое необходимо приложить к стержню, чтобы его длина увеличилась в два раза. А две формулы выше –
закон Гука
.

Вычислим упругую энергию

растянутого стержня. Приложим к стержню растягивающую силу и будем постепенно (непрерывно и медленно) увеличивать ее от до . Удлинение будет меняться от до . По закону Гука ,

где – коэффициент упругости

.

Вся работа по растяжению стержня пойдет на увеличение его упругой энергии . Т.к. в конечном состоянии , то , то для энергии получим .

Под действием растягивающей или сжимающей силы изменяются не только продольные, но и поперечные размеры стержня. Если сила ­ растягивающая, то поперечные размеры стержня уменьшаются. Если она сжимающая, то они увеличиваются.

коэффициент Пуассона

.

Он зависит только от материала рассматриваемого тела. Модуль Юнга и коэффициент Пуассона полностью характеризуют упругие свойства изотропного материала. Все остальные упругие деформации можно выразить через эти коэффициенты.

Post Views: 4 220

Как хранить финики

Плоды финиковой пальмы – продукты чрезвычайно полезные и вкусные. Если вы сладкоежка, они придут к вам на выручку, успешно заменив вредный сахар. Они содержат фруктозу в большом количестве, эту сладость можно употреблять даже при сахарном диабете. Ценность продукта в огромном количестве микроэлементов и витаминов, фрукт справедливо называют продуктом, продлевающим жизнь.

Интересное: Как сохранить хрен на зиму в домашних условиях

Известно, что съедая всего по 10 плодов в течение дня, вы никогда не будете страдать болезнями сердца, гипертонией и прочими неприятными недугами. Финики стимулируют работу кишечника, налаживают пищеварение, не дают полнеть. Они не являются аллергенами, поэтому детям их можно давать без опасений. Мощное противоопухолевое действие ценного сухофрукта не дает развиваться онкологическим процессам, поэтому покупайте финики и введите их в свой ежедневный рацион. Дома хранятся плоды прекрасно и достаточно долго, да и специальных условий для себя не требуют.

Но мы все-таки расскажем, как хранить финики, чтобы в условиях дома или городской квартиры максимально сберечь их ценные свойства.

Модуль упругости различных материалов

Gsm модуль для котла

Модули упругости для различных материалов имеют совершенно разные значения, которые зависят от:

  • природы веществ, формирующих состав материала;
  • моно- или многокомпонентный состав (чистое вещество, сплав и так далее);
  • структуры (металлическая или другой вид кристаллической решетки, молекулярное строение прочее);
  • плотности материала (распределения частиц в его объеме);
  • обработки, которой он подвергался (обжиг, травление, прессование и тому подобное).

Его значение для бронзовых материалов зависит не только от обработки, но и от химического состава:

  • бронза – 10,4 ГПа;
  • алюминиевая бронза при литье – 10,3 ГПа;
  • фосфористая бронза катанная – 11,3 ГПа.

Модуль Юнга латуни на много ниже – 78,5-98,1. Максимальное значение имеет катанная латунь.

Сама же медь в чистом виде характеризуется сопротивлением к внешним воздействиям значительно большим, чем ее сплавы – 128,7 ГПа. Обработка ее также снижает показатель, в том числе и прокатка:

  • литая – 82 ГПа;
  • прокатанная – 108 ГПа;
  • деформированная – 112 ГПа;
  • холоднотянутая – 127 ГПа.

Близким значением к меди обладает титан (108 ГПа), который считается одним из самых прочных металлов. А вот тяжелый, но ломкий свинец, показывает всего 15,7-16,2 ГПа, что сравнимо с прочностью древесины.

Для железа показатель напряжения к деформации также зависит от метода его обработки: литое – 100-130 или кованное – 196,2-215,8 ГПа.

Чугун известен своей хрупкостью имеет отношение напряжения к деформации от 73,6 до 150 ГПа, что соответствует от его виду. Тогда как для стали модуль упругости может достигать 235 ГПа.

Модули упругости некоторых материалов

На величины параметров прочности влияют также и формы изделий. Например, для стального каната проводят расчеты, где учитывают:

  • его диаметр;
  • шаг свивки;
  • угол свивки.

Интересно, что этот показатель для каната будет значительно ниже, чем для проволоки такого же диаметра.

Стоит отметить прочность и не металлических материалов. Например, среди модулей Юнга дерева наименьший у сосны – 8,8 ГПа, а вот у группы твердых пород, которые объединены под названием «железное дерево» самый высокий – 32,5 ГПа, дуб и бук имеют равные показатели – 16,3 ГПа.

Среди строительных материалов, сопротивление к внешним силам у, казалось бы, прочного гранита всего 35-50 ГПа, когда даже у стекла – 78 ГПа. Уступают стеклу бетон – до 40 ГПа, известняк и мрамор, со значениями 35 и 50 ГПа соответственно.

Такие гибкие материалы, как каучук и резина, выдерживают осевую нагрузку от 0,0015 до 0,0079 ГПа.

Финики: калорийность

  • Она зависит от того, в каком виде вы его употребляете. В свежем она составляет 274 ккал, а в сушеном — 340 ккал. Если иметь в виду, что в среднем вес одного финика около 10 граммов, то в нем примерно 23-24 ккал.
  • Вяленые финики по калорийности схожи с сушеными. При этом независимо от способа обработки плод сохраняет все полезные свойства. И несмотря на достаточно высокую калорийность, он все же более полезен и предпочтителен, нежели сахар, конфеты или торты.
  • Следует также отметить, что финики с косточкой более калорийны, чем те, в которых косточки удалены. Наличие или отсутствие косточки зависит от технологии сушки. Плоды с косточкой сохраняют больше полезных веществ и в среднем имеют на 10 ккал большую калорийность.

Для сравнения, средняя калорийность свежего финика с косточкой (на 100 г) — 240 ккал, сушеного с косточкой — 283 ккал, без косточки — 274 ккал, а вяленого с косточкой — 292 ккал.

Факторы, влияющие на модуль Юнга

Цены на ограждения из нержавеющей стали за метр

Модуль Юнга – это основная характеристика бетона, определяющая его прочность. Благодаря величине проектировщики проводят расчёты устойчивости материала к различным видам нагрузок. На показатель влияют многие факторы:

  • качество и количество заполнителей;
  • класс бетона;
  • влажность и температура воздуха;
  • время воздействия нагрузочных факторов;
  • армирование.

ФОТО: dostroy.comМодуль упругости позволяет проектировщикам правильно рассчитывать нагрузку

Качество и количество заполнителей

Качество бетона зависит от его заполнителей. Если компоненты имеют низкую плотность, соответственно, модуль Юнга будет небольшим. Упругость материала возрастает в несколько раз, если применяются тяжёлые наполнители.

ФОТО: russkaya-banja.ruКрупные компоненты увеличивают характеристики упругости

ФОТО: ivdon.ruГрафик зависимости предела прочности материала от цементного камня

Класс материала

На коэффициент влияет и класс бетона: чем он ниже, тем меньше значение модуля упругости. Например:

  • модуль упругости у В10 соответствует значению 19;
  • В15 – 24;
  • В-20 – 27.5;
  • В25 – 30;
  • показатель у В30 возрастает до значения 32,5.

ФОТО: buildingclub.ruЗависимость от класса бетона

Как влияют на показатель влажность и температурные значения

На рост деформаций и уменьшение упругих свойств материала влияют:

  • повышение температуры воздуха;
  • увеличение солнечной активности.

Под воздействием негативных факторов окружающей среды внутренняя энергия материала увеличивается, это приводит к линейному расширению бетона и соответственно, к увеличению пластичности.

На ползучесть материала оказывает влажность, приводящая к изменению упругих характеристик. Чем выше содержание водяных паров, тем ниже коэффициент.

ФОТО: betonpro100.ruВлияние влажности на ползучесть бетона

Время воздействия нагрузки и условия твердения смеси

На показатель упругости влияет время воздействия нагрузки:

  • при мгновенном усилии на бетонную конструкцию деформативность прямо пропорциональна величине внешней нагрузке;
  • при длительном воздействии значения коэффициента уменьшаются.

Во время проведения исследований было отмечено, если бетон твердеет естественным способом, модуль упругости у него выше в отличие от пропаривания материала в различных условиях. Это объясняется тем, что при использовании внешних условий в бетоне образуются пустоты и поры в большом количестве, ухудшающие его упругие свойства.

ФОТО: udarnik.spb.ruЗависимость модулей упругости от разных факторов

Возраст бетона и армирование конструкции

Прочность бетона находится в прямой зависимости от его возраста, со временем показатель только увеличивается. Ещё один фактор, положительно влияющий на модуль упругости бетона, – армирование, которое препятствует деформации материала.

ФОТО: 63-ds.netsamara.ruДля конструкций, которые будут эксплуатироваться под большими нагрузками, необходима укладка металлической решётки

Косточки фиников: польза

  • Косточкам финика также присущи лечебные свойства. Для того, чтобы предотвратить появление камней в почках и в мочевом пузыре, а также для облегчения их выведения изготавливают специальный отвар, который можно пить наряду с основным лечением. И, конечно, желательно поставить об этом в известность своего лечащего врача.
  • Если измельчить косточки финика в порошок, то он поспособствует лечению загноившихся ран и язв на кожных покровах. Также такой порошок эффективен для борьбы с диареей.

Модуль упругости дерева

Древесина считается упругой, если она после устранения действия силы изгибающей её, принимает исходную форму. У упругости есть предел. Он достигается, когда при изгибе деревянная детальили изделие сохранит конечную форму.Попросту говоря, предел упругости доски достигается в тот момент, когда она ломается. Свойства упругости и гибкости не идентичны. Гибкость – способность менять форму под действием внешних воздействий. Упругость – возможность возвращать утраченную форму. Дерево с высоким модулем необходимо для того, чтобы делать спортивные снаряды, мебель. Наиболее упруга древесина таких пород как ясень, бук, кария, лиственница.

Чтобы описать способность к возвращению исходной формы, используют следующие физические величины:

  • модуль упругости Е;
  • коэффициент деформации µ;
  • модуль сдвига G.

В общем, можно говорить о том, что при приложении силы вдоль древесных волокон, модуль упругости в 20-25 раз выше, чем если та же сила действует поперек волокон. Если сила действует перпендикулярно направлению волокон и направлена радиально, то этот показатель на 20-50 % больше, чем при действии той же силы в тангенциальном направлении.

Ниже рассмотрим более подробно эти физические величины, определяющие способность дерева возвращать исходную форму при снятии деформирующего усилия.

Модуль упругости древесины основных пород

Модуль упругости в физике рассматривается как единое наименование комплекса физических величин, характеризующих способность твердого тела (в нашем случае – дерева) упруго деформироваться, если к нему будет приложена какая-то сила.

Модуль упругости древесины (Е) – соотношение между нормальными напряжениями и относительными деформациями. Он измеряется в Мпа либо в кГс/см2 (1Мпа=10.197 кГс/см2) Выделяют несколько видов:

  1. вдоль волокон Еа.
  2. поперек волокон (тангенциальный) Еt.
  3. поперек волокон (радиальный) Еr.
  4. модуль упругости при изгибе Еизг.

Таблица. Сведения по наиболее часто используемым породам.*

Коэффициенты поперечной деформации основных пород дерева

Во время приложения нагрузки, кроме продольной деформации вдоль волокон так же появляется поперечная при изгибе.

Коэффициенты этого типа деформации приведены в таблице:

Модуль сдвига основных пород древесины

Модуль сдвига – коэффициент пропорциональности между касательными напряжениями и угловыми деформациями древесины.

Данные по модулю сдвига для основных пород приведены ниже:

Пластичность древесины

Дерево способно под давлением менять без разрушения свою форму, сохранять её после того, как давление будет снято. Такое свойство называется пластичностью. Пластичность зависит от тех же критериев, что упругость, только в обратном направлении. Например, чем выше влажность древесины, тем она более пластична, при этом менее упруга.

Пластичность дерева повышают с помощью специальной обработки. Пропаривая или проваривая его в воде, получаем более пластичный материал, которую затем используют для изготовления мебели, полозьев саней. Наивысшая пластичность у бука, вяза, ясеня, дуба. Это свойство обусловлено строением проводящей системы данных пород. У бука, например, много крупных сердцевинных лучей, изгибающих волокна древесины. Сосуды, расположенные группами в годовых слоях вяза, дуба, ясеня, сильно сдавлены более плотной поздней древесиной, поэтому пластичность этих пород высока.

Предел прочности

Твердые тела способны выдерживать ограниченные нагрузки, превышение предела приводит к разрушению структуры металла, формированию заметных сколов или микротрещин. Возникновение дефектов сопряжено со снижением эксплуатационных свойств или полным разрушением. Прочность сплавов и готовых изделий проверяют на испытательных стендах. Стандартами предусмотрен ряд испытаний:

  • Продолжительное применение деформирующего усилия;
  • Кратковременные и длительные ударные воздействия;
  • Растяжение и сжатие;
  • Гидравлическое давление и др.

В сложных механизмах и системах выход из строя одного элемента автоматически становится причиной повышения нагрузок на другие. Как правило, разрушения начинаются на тех участках, где напряжения максимальны. Запас прочности служит гарантией безопасности оборудования во внештатных ситуациях и продлевает срок его службы.

Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)

Упругие свойства тел

Ниже приводятся справочные таблицы общеупотребительных констант; если известны две их них, то этого вполне достаточно для определения упругих свойств однородного изотропного твердого тела.

Модуль Юнга или модуль продольной упругости в дин/см2.

Модуль сдвига или модуль кручения G в дин/см2.

Модуль всестороннего сжатия или модуль объемной упругости К в дин/см2.

Объем сжимаемости k=1/K/.

Коэффициент Пуассона µ равен отношению поперечного относительного сжатия к продольному относительному растяжению.

Для однородного изотропного твердого материала имеют место следующие соотношения между этими константами:

G = E / 2(1 + μ) — (α)

μ = (E / 2G) — 1 — (b)

K = E / 3(1 — 2μ) — (c)

Коэффициент Пуассона имеет положительный знак, и его значение обычно заключено в пределах от 0,25 до 0,5, но в некоторых случаях он может выходить за указанные пределы. Степень совпадения наблюдаемых значений µ и вычисленных по формуле (b) является показателем изотропности материала.

Таблицы значений Модуля упругости Юнга, Модуля сдвига и коэффициента Пуассона

Курсивом даны значения, вычисленные из соотношений (a), (b), (c).

Материал при 18°СМодуль Юнга E, 1011 дин/см2.Модуль сдвига G, 1011 дин/см2.Коэффициент Пуассона µМодуль объемной упругости К, 1011 дин/см2.
Алюминий7,052,620,3457,58
Висмут3,191,200,3303,13
Железо21,28,20,2916,9
Золото7,82,70,4421,7
Кадмий4,991,920,3004,16
Медь12,984,8330,34313,76
Никель20,47,90,28016,1
Платина16,86,10,37722,8
Свинец1,620,5620,4414,6
Серебро8,273,030,36710,4
Титан11,64,380,3210,7
Цинк9,03,60,256,0
Сталь (1% С) 1)21,08,100,29316,88
(мягкая)21,08,120,29116,78
Константан 2)16,36,110,32715,7
Манганин12,44,650,33412,4
1) Для стали, содержащий около 1% С, упругие константы, как известно , меняются при термообработке.
2) 60% Cu, 40% Ni.

Экспериментальные результаты, приводимые ниже, относятся к обычным лабораторным материалам, главным образом проволокам.

ВеществоМодуль Юнга E, 1011 дин/см2.Модуль сдвига G, 1011 дин/см2.Коэффициент Пуассона µМодуль объемной упругости К, 1011 дин/см2.
Бронза (66% Cu)-9,7-10,23,3-3,70,34-0,4011,2
Медь10,5-13,03,5-4,90,3413,8
Нейзильбер1)11,64,3-4,70,37
Стекло5,1-7,13,10,17-0,323,75
Стекло иенское крон6,5-7,82,6-3,20,20-0,274,0-5,9
Стекло иенское флинт5,0-6,02,0-2,50,22-0,263,6-3,8
Железо сварочное19-207,7-8,30,2916,9
Чугун10-133,5-5,30,23-0,319,6
Магний4,251,630,30
Бронза фосфористая2)12,04,360,38
Платиноид3)13,63,60,37
Кварцевые нити (плав.)7,33,10,173,7
Резина мягкая вулканизированная0,00015-0,00050,00005-0,000150,46-0,49
Сталь20-217,9-8,90,25-0,3316,8
Цинк8,73,80,21
1) 60% Cu, 15% Ni, 25% Zn
2) 92,5% Cu, 7% Sn, 0,5% P

3) Нейзильбер с небольшим количеством вольфрама.

ВеществоМодуль Юнга E, 1011 дин/см2.ВеществоМодуль Юнга E, 1011 дин/см2.
Цинк (чистый)9,0Дуб1,3
Иридий52,0Сосна0,9
Родий29,0Красное дерево0,88
Тантал18,6Цирконий7,4
Инвар17,6Титан10,5-11,0
Сплав 90% Pt, 10% Ir21,0Кальций2,0-2,5
Дюралюминий7,1Свинец0,7-1,6
Шелковые нити10,65Тиковое дерево1,66
Паутина20,3Серебро7,1-8,3
Кетгут0,32Пластмассы:
Лед (-20С)0,28Термопластичные0,14-0,28
Кварц7,3Термореактивные0,35-1,1
Мрамор3,0-4,0Вольфрам41,1
1) Быстро уменьшается с увеличением нагрузки
2) Обнаруживает заметную упругую усталость
Температурный коэффициент (при 150С)
Et=E11 (1-ɑ (t-15)), Gt=G11 (1-ɑ (t-15))
Сжимаемость k, бар-1 (при 7-110С)
ɑ, для Еɑ, для G
Алюминий4,8*10-45,2*10-4Алюминий1,36*10-6
Латунь3,7*10-44,6*10-4Медь0,73*10-6
Золото4,8*10-43,3*10-4Золото0,61*10-6
Железо2,3*10-42,8*10-4Свинец2,1*10-6
Сталь2,4*10-42,6*10-4Магний2,8*10-6
Платина0,98*10-41,0*10-4Платина0,36*10-6
Серебро7,5*10-44,5*10-4Стекло флинт3,0*10-6
Олово5,9*10-4Стекло немецкое2,57*10-6
Медь3,0*10-43,1*10-4Сталь0,59*10-6
Нейзильбер6,5*10-4
Фосфористая бронза3,0*10-4
Кварцевые нити-1,5*10-4-1,1*10-4

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

,

где изменение длины тела вследствие сжатия или растяжения, F сила, приложенная к телу и вызывающая деформацию (сила упругости), k коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

, но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться

На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит слипание витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Дано:

Решение:

Найдем численное значение деформации пружины:

Запишем:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Можно ли использовать финики для похудения?

В основе каждого похудения лежит одна простая истина: нужно потратить больше энергии, чем употребить в виде продуктов. Поэтому, если бесконтрольно поедать финики, которые являются очень калорийными, то похудеть, наверное, не получится. Ведь на 100 гр продукта приходится 227 ккал.

  • Углеводов — 69,2 гр.
  • Жиров — 0,5 гр.
  • Белков — 2,5 гр.

Чтобы действительно худеть, наслаждаясь этим удивительным сухофруктом, необходимо просто знать особенности своего метаболизма и употреблять качественный продукт, а не обработанный сахарным сиропом.

Слипшиеся и блестящие плоды по своим свойствам похожи на карамельки. К тому же, зная высокую калорийность следует ограничивать прием. При этом в качестве перекуса или заменителя сладких шоколадных батончиков можно скушать батончики и конфеты из фиников.

Влияние радиоактивного облучения на изменение механических свойств

Радиоактивное облучение по-разному влияет на различные материалы. Облучение материалов неорганического происхождения по своему влиянию на механические характеристики и характеристики пластичности подобно понижению температуры: с увеличением дозы радиоактивного облучения увеличивается предел прочности и особенно предел текучести, а характеристики пластичности снижаются.

Облучение пластмасс также приводит к увеличению хрупкости, причем на предел прочности этих материалов облучение оказывает различное влияние: на некоторых пластмассах оно почти не сказывается (полиэтилен), у других вызывает значительное понижение предела прочности (катамен), а в третьих — повышение предела прочности (селектрон).

Можно ли финики при гастрите?

  • При гастрите финики можно употреблять, если соблюдать ряд правил, касающихся особенностей рациона при наличии этого заболевания (дробное питание, легкая и не агрессивная теплая пища, осторожность в употреблении сырых фруктов и овощей).
  • Особенная осторожность при включении в рацион больного гастритом фиников необходима в связи с содержанием в плодах пищевых волокон, которые при умеренном употреблении, рекомендованном врачом, оказывают пользу для работы желудочно-кишечного тракта, а в случае бесконтрольного применения в пищу грубые волокна и протеин могут сказаться негативно.
  • Ни в коем случае нельзя употреблять в пищу финики в случае обострения заболевания, при ремиссии же норма, определенная врачом, окажет пользу, особенно при повышенной кислотности, поскольку кислоты и аминокислоты финика оказывают положительное влияние на восстановление кислотно-щелочного баланса, предотвращая изжогу.
  • В среднем нормой является прием 50 г фиников за один раз незадолго до основного приема пищи.
  • Можно также готовить из фиников десерты, коктейли, пудинги, компоты и смузи, добавлять их в плов.

К примеру, полезен при гастрите десерт из фиников с медом: измельчить плоды, смещать с медом до не очень густой консистенции и есть натощак по одной десертной ложке. Сюда же можно добавить измельченную курагу.

Параметры, от которых зависит упругость древесины

Модуль упругости древесины — параметр изменяющийся, на его значение влияют:

  • Влажность. Упругость древесины находится в обратной зависимости от влажности. То есть при высокой влажности дерева, его способность возвращаться к исходной форме будет минимальной.
  • Прямослойность. Если волокна расположены извилисто, беспорядочно, то способность восстанавливать форму у неё будет заметно ниже, чем у прямослойной.
  • Плотность. Дерево с низкой плотностью не так упруго, как более плотное.
  • Возраст дерева. Древесина старого дерева более упруга, чем молодого.
  • Природные особенности дерева. Хвойные деревья имеют однорядные мелкие сердцевинные лучи, поэтому их древесина более упругая, хотя удельный вес у таких пород не велик.
  • Возраст самой древесины. Более молодые слои ствола дерева называют заболонью, те, что располагаются ближе к центру, и, соответственно, старее – ядром. Заболонь более упругая, чем ядро.

Как Сушить Финики В Домашних Условиях

Здравствуйте, друзья! Когда мы решили в семье, что будем постепенно отказываться от рафинированного сахара. Пробовали то одно, то другое, но все не так-то просто, ведь наш организм совершенно не терпит «пустоты». У меня была привычка скушать конфетку, когда пью чай, она так и осталась. Но я нашла альтернативу, поэтому сегодня речь пойдет о том, сколько сахара в сушеных финиках и может этот продукт заменить такие привычные сладкие перекусы?

Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

Читать также: Прибор который ищет провода в стене

  1. Жёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
  2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
  3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
  4. Коэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
  5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
  6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

Финики и диабет

Этот продукт имеет высокий гликемический индекс, поэтому категорически не рекомендуется страдающим этим заболеванием. ГИ — 70 — достаточно высокий показатель. А в зависимости от сорта фиников количество сахара варьируется от 103 до 165 единиц, что неприемлемо для людей с сахарным диабетом.

Противопоказания

  1. Людям, страдающим ожирением этот продукт также не рекомендуется.
  2. Стоит ограничить употребление при индивидуальной непереносимости и аллергических реакциях на один из компонентов, содержащихся в финике.
  3. Детям после 3 — х лет рекомендуется давать не более 1 — 3 штучки в день
  4. При гастрите, язве желудка и проблемах с поджелудочной железой финики противопоказаны.

Итак, финики очень полезны и обогащают организм многими полезными элементами, но стоит дозировать употребление этих сухофруктов, даже если вы заменяете ими рафинированный сахар.

Как много сахара в зефире, об этом читаем здесь.

Если у вас есть, чем дополнить мой список полезных свойств фиников, пишите в комментариях. Буду рада общению

Если статья была вам полезна, то делитесь с друзьями в социальных сетях и подписывайтесь на обновления. Пока!

Модуль упругости фанеры

Фанера – строительный материал, производимый путем склеивания нескольких слоев деревянного шпона. Она очень популяренна, и неспроста. Кроме эстетической ценности, фанера обладает рядом значений параметров, выделяющих её в ряду материалов для строительства. Проходя обработку, фанера приобретает прочность, упругость, влагостойкость.

На характеристики фанеры влияют многие факторы:

  • порода дерева, используемого для шпона;
  • исходное состояние сырья;
  • влажность самой фанеры;
  • тип и состав клея, которым соединяются слои шпона;
  • технология предварительной обработки.

Для фанеры так же рассчитывается модуль упругости и все соответствующие коэффициенты.

Важно то, что модуль упругости фанеры и другие показатели выше, чем у древесины, из которой она была изготовлена. Модуль упругости древесины рассчитывают обязательно перед постройкой кровельных, стропильных систем

Знание внутренних усилий, появляющихся в строительных материалах, важно для безопасности, долговечности постройки. Способность возвращать утраченную форму значимо при выборе материала рукояток ударных инструментов, оружейных лож

Модуль упругости древесины рассчитывают обязательно перед постройкой кровельных, стропильных систем

Знание внутренних усилий, появляющихся в строительных материалах, важно для безопасности, долговечности постройки. Способность возвращать утраченную форму значимо при выборе материала рукояток ударных инструментов, оружейных лож

Общее понятие

Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).

В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.

Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.

Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.

Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.

Дополнительные характеристики механических свойств

Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:

  • Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
  • Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
  • Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
  • Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
  • Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
  • Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.

Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.

У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.

ПОИСК

    Е — приведенный модуль Юнга, принятый равным модулю упругости стали  [c.71]
    Деформационные свойства. Модуль Р. (Е) при небольшом растяжении на 4—5 десятичных порядков ниже модуля Юнга для стали [соответственно 0,5— [c.158]

    МОДУЛЬ ЮНГА УГЛЕРОДИСТОЙ И ЛЕГИРОВАННОЙ СТАЛЕЙ ПРИ РАЗНЫХ ТЕМПЕРАТУРАХ [c.16]

    Следует отметить, что высокая эластичность каучука совершенно отлична от упругих деформаций кристаллических веществ или металлов, составляющих всего несколько процентов от исходных размеров, тогда как каучук можно растягивать в 10 раз.

Резко различаются также необходимые для деформации напряжения.

Модуль упругости (или модуль Юнга) Е, характеризующий отношение между приложенным напряжением и относительным удлинением образца, составляет для стали около 20000 кг/мм , для стекла около 6000 кг/мм , а для каучука лишь около [c.228]

    При конструировании важно установить распределение деформаций конструкции, возникающих в процессе эксплуатации под влиянием приложенных напряжений. Напряжения могут возникать из-за давления, создаваемого жидкостью или газом, течением жидкости или неоднородным температурным расширением при изменениях температуры. Упругие свойства часто считают не зависящими от структуры, но существуют ситуации, когда такое утверждение становится неверным. Отдельные зерна металлических кристаллов в отношении упругих свойств анизотропны. Таким образом, упругие постоянные зависят от ориентации зерна по отношению к ориентации приложенных напряжений. В процессе производства деталей может возникнуть преимущественная ориентация отдельных зерен, что и создает упругую анизотропию. Весьма вероятно, что различные степени преимущественной ориентации приводят к довольно широкому разбросу данных по упругим свойствам металлов и сплавов. Вследствие того что этот разброс может вызывать появление погрешности, достигающей в некоторых случаях при расчетах деформаций 20 %, эта тема детально рассматривается в настоящем параграфе. Таблица 3, 4.5,8 — лишь пример того типа информации, которая встречается в литературе. Можно полагать, например, что стали с 5—9 %-ным содержанием хрома должны иметь примерно те же значения модуля Юнга, что и стали, содержание хрома в которых близко к указанному. [c.196]

    Прочность сталей значительно изменяется при переходе к высоким температурам. Так, предел прочности при растяжении хромоникелевой стали типа 18-8 падает с 7000 до 4000 кгс/см при 700 °С до 2000 кгс/см при 800 °С. Модуль Юнга углеродистой и легированной сталей уменьшается при нагревании от 20 до 500 °С на 30%.  [c.19]

    Иногда для повышения прочности между двумя пьезоэлементами помещают металлическую пластину [318].

Собственная частота преобразователя может быть повышена расположением двух пассивных (например, стальных) пластин по обе стороны от биморфного преобразователя из двух пьезопластин.

Это объясняется тем, что модуль Юнга стали много больше, чем у пьезокерамики, а изгибная жесткость конструкции определяется в основном ее [c.70]

    Твердость вещества можно оценить при помощи модуля Юнга, представляющего собой отношение приложенного напряжения (или силы, отнесенной к единице площади) и соответствующей ему деформации или удлинения.

Типичные значения модуля Юнга для различных материалов представлены на рис. 7.1. На одном конце шкалы расположены неорганические кристаллические материалы, такие, как алмаз, кварц, сталь и т. д., модули которых [c.

131]

    Еще большее впечатление производит различие в силе, необходимой для осуществления деформации.

Для удлинения стальной проволоки диаметром 1 мм на 1% требуется нагрузка в 1600 Н (двукратный средний вес человека), а для удлинения каучуковой нити того же диаметра на ту же величину необходима нагрузка меньше Ю Н.

Так называемый модуль Юнга (отношение напряжения к удлинению) для стали в 100 000 раз больше, чем для каучука. [c.45]

    Характеристика сталей и сплавов при комнатной температуре и частоте колебаний 20 кгц (р — плотность Е — модуль Юнга Спр — скорость звука рс — волновое сопротивление  [c.115]

    Следует отметить, что для коммуникаций часто применяют титан неоправданно большой толщины, что не вызывается ни прочностными, ни коррозионными требованиями. Часто на титан как конструкционный материал переносятся представления, сложившиеся в результате многолетней работы со сталью.

Так, при замене коммуникаций из стали на титановые используют титан той же толщины, что и сталь. Большой расход титана именно на коммуникации объясняется в некоторой степени и этой причиной.

Например, коллекторы влажного хлора на заводах делают из листов титана толщиной 3—5 мм (только на двух предприятиях эти коллекторы сделаны из листов толщиной 2 мм, но и это значительная толщина). За рубежом для данных целей используют титан толщиной 0,8—1,0 мм.

В связи с тем, что модуль Юнга у титана незначителен, при расчетах следует обращать внимание на возможный прогиб труб, а при монтаже — на крепление трубопроводов. [c.156]

    Любопытные наблюдения публикует Фирс-Виккерс, утверждая, что нержавеющие аустенитовые стали (хромовые и хромоникелевые) дают падение модуля Юнга приблизительно на 1% на каждые 30° повыщения температуры. В случае особенно тяжелых условий работы лучше всего обратиться за информацией к поставщикам стали. [c.670]

    Вулканизованный каучук способен испытывать обратимые деформации на сотни процентов при весьма малом значении модуля упругости. (Модуль Юнга для стали 20 000—22 000 кг/см , для каучука [c.10]

    Следует отметить, что высокая эластичность каучука совершенно отличается от упругих деформаций кристаллических веществ или металлов, которые составляют всего несколько процентов от исходных размеров, тогда как каучук можно растягивать до десятикратных удлинений.

Резко различаются также необходимые для деформации напряжения.

Модуль упругости (или модуль Юнга) Е, характеризующий отношение между приложенным напряжением и относительным удлинением образца, составляет для стали около 20 ООО кг/мм», для стекла—около 6000 кг/мм , а для каучука—лишь около 0,1 кг/мм». Эти различия объясняются тем, что нри упругой деформации кристаллов происходят лишь небольшие изменения средних расстояний между молекулами и валентных расстояний между атомами, связанные со значительными изменениями внутренней энергии напротив, при чистой высоко-эластической деформации большие удлинения происходят без изменения валентных расстояний нри постоянстве внутренней энергии. [c.272]

    На практике все большее применение стали получать ОВ с двуслойным покрытием, в которых первый слой выполнен мягким (буферным) с низким (1—2 МПа) модулем Юнга, а второй—с высоким модулем Юнга от 0,1 до 4 ГПа [52] [c.101]

    В формуле (П1.2) за начальную деформацию 5 обычно (но не обязательно) принимается величина некоторой условно упругой деформации, которая определяет начало пластического течения материала.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: